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ABSTRACT

The report presents the results of a numerical investigation of a
novel recurrence relation for iteratively solving modified integral
equations for calculating free-surface potential flow. Numerical
results are presented for the simple case of wave radiation in the
zero- and infinite-frequency limits.

ADMINISTRATIVE INFORMATION

This research was funded under the David W. Taylor Naval Ship Research and

Development Center's Independent Research Program, Program Element 61152N, Task

Area ZR0230101, and Work Unit 1843-045.

INTRODUCTION

Most of the numerical methods reported in the ship-hydrodynamics literature

for calculating potential flow about ship-hull forms, whether free-surface

effects are taken into account or are neglected as in the so-called double-hull

approximation (in which the free surface is treated as a rigid wall), closely

follow the pioneering method of Hess and Smith1 . Briefly, this well-known

numerical method consists in determining the density of an auxiliary distribu-

tion of sources on the body surface, in the classical manner described by

Kellogg2 , by numerically solving an integral equation. This integral equation

is solved by approximating the surface of the body by an ensemble of planar

panels and assuming a constant (uniform) source density within each panel. The

integral equation is then approximated by a system of linear equations, which is

solved by inverting the coefficient-matrix, so-called "matrix of influence

coefficients".

A number of variations and extensions of the method of Hess and Smith have

been proposed. In particular, alternative integral equations have been



formulated - by using an auxiliary distribution of normal dipoles (instead of

sources as in the method of Hess and Smith) or by directly applying Green's

third identity to the velocity potential and the fundamental source potential

(Green function) - and solved numerically. Important Improvements to the basic

Hess and Smith method have recently been incorporated into the so-called higher-

order panel method3 , in which curved panels supporting linear-source and

quadratic-dipole distributions are used.

An alternative approach for calculating potential flow about a body in an

unbounded fluid, in which a modified integral equation for determining the

velocity potential is solved iteratively, has been proposed 4 ,5,6, 7 . This alter-

native approach has also been extended to the calculation of free-surface poten-

tial flows8'9 ,1 0. A main recommendation of this alternative approach is that the

• :modified integral equations upon which the approach is based have regular

": kernels, whereas the traditional integral equations used in the previously-

mentioned methu. ; have singular kernels. Another potential advantage of the

alternative approach resides in the use of an iterative solution procedure,

which is well suited to the analysis of complex systems requiring a large number

of panels 6 . This report presents the results of a limited numerical investiga-

tion of the novel recurrence relation proposed in NoblesselO. More precisely,

this recurrence relation is studied here for the simple case of wave radiation

in the zero- and infinite-frequency limits.

INTEGRAL EQUATIONS

This study considers potential flow due to translation or rotation of a
U.

rigid, nonlifting body through an incompressible and inviscid fluid. The sur-

face of the body is denoted by S, and n represents the unit normal vector to S

pointing inside the body. Furthermore, 1 (x, y, z) and t (&, n, C) represent

the position vectors, with respect to a rectangular system of coordinates

2



attached to the moving body, of any two points on the body surface S. The coor-

dinates X and are adimensional, with respect to some length characterizing

the size of the body taken as reference. The velocity potential, # say, of the

flow likewise is adimensional, with the body characteristic length and some

characteristic speed of its motion used as reference. The normal component of

- the fluid velocity at any point X on the body surface, given by On - V#"n, is

*" equal to the normal component of the velocity of S at x, and thus is known for

. all six fundamental motions of the body (translation and rotation about the x,

y, z axes).

The Green function appropriate for an unbounded fluid is given by

4vG(E,x) - -1/r where r - [(t-x)2 + (v_-y)2 + (Cz)211/2. Application of Green's

third identity to the velocity potential #(T) and the foregoing free-space Green

function G(C,x) yields the following classical integral equation for determining

the potential #(t) at any point E on S:

#(0/2 - f(E)+L(;$), (1)

"- where f() is the known (since *n is specified on S) potential defined as

&p -0 -0 . -7f(C) = -fs G(Q,x)On(x)da(x), (2)

" and L(;#) represents the integral transform of * defined as

L(-;) - fS Gn(C,x)#(x)da(x). (3)

In equations (2) and (3), da(x) represents the differential element of area of

the surface S at the point x.

The previously-mentioned modified integral equation corresponding to the

classical integral equation (1) takes the form 5 ,6 ,7

+Q f(W+L (Q;*,(4

*3

4 - ' N
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where f() is the known source potential given by equation (2) and L'(&;#) is

the integral transform of # defined as

La(w;*) - Is Gn (Cx)L*(x)- )Jda(x).)

A noteworthy feature of the modified integral equation (4) is that the integrand

Gn(Qx)[#(x)-#(4)I of the integral (5) remains finite as the "integration

point" x approaches the "calculation point" C.

The radiation potential for a body intersecting a free surface must satisfy

2the free-surface boundary condition 3#/3z - (w L/g) # - 0 on the equilibrium

plane of the free surface taken as the plane z - 0 with the z axis pointing

. upward, where w - radiant frequency of oscillatory otion of the body, L - body

characteristic length and g - acceleration of gravity. In the zero-frequency

limit W 2L/g - 0 and the infinite-frequency limit w 2L/g - -, the free-surface

boundary condition takes the simple degenerate forms *I/Bz - 0 and + - 0,

respectively. The Green functions GO and CO corresponding to these limiting

cases are given by 4WO0 -1/r - l/r* and 4w&" - -1/r + 1/r*, where r - [(E-x) 2

+(n-y) 2*(c-z) 2]1/2 as was defined previously and r = [(E-x) 2 +(-y)2 +(C+z) 2 ]1/2.

The modified integral equation, corresponding to equation (4), for the

zero-frequency potential, *0 say, takes the form

#.() ufOQ()+LO( ;*O), (6)

where the potentials f0(C) and L0(4;0 ) are defined as

f0) -s GO(,X)o 0
( x ) da( x ),

=XI (X)*O(&)da(x).

4



The corresponding modified integral equation for the infinite-frequency

potential, #* say, takes the form

- f"(t+L#"-( .) (7)

where the potentials f'() and L(1;p ) are defined as

fm() -fS '(x)*n(da( x ) ,

-; Is n ",[* "( ]da(),

and w(&) is the waterplane integral defined as

2w w(t) - ffo [(E x ) 2 +(ny)2 +r2 ]3/2dxdy,

with a - portion of the mean free-surface plane inside the body (w 0 for a

fully-submerged body). By expressing the integrand of the foregoing waterplane

integral in the form a(x- )[(y-n) 2 C2]-I[ x-_)2+(y-Tl)2 ;2t-1/2/ax and using

Green's eorem, we may express the waterplane integral in the form of the

equivalent waterline integral

2ww(T) " -; t (x-)[(Y-Tl) 2+ 2]-l[(x-d )2 +(y-,n) 2 +t;2]-1/2dy,

where c represents the intersection curve of the body surface S with the plane

z -O.

FLOW ABOUT AN ELLIPSOID IN AN UNBOUNDED FLUID

The practicality of solving the classical integral equation (1) by using

an iterative solution procedure based on the Neumann series

- f(T)+L(C;,(n)), (8)

with n>O and #(0) O, has been investigated numerically for the simple case of

flow about an ellipsoid with major, intermediate and minor dimensions equal to

5
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1, 0.15 and 0.1, respectively. Figure 1 depicts the relative errors associated

with the nth approximations Aii(n) -to the added-mass coefficients Ajj for all

six fundamental motions of the ellipsoid (i - I to 6). This figure shows that

the Neumann series (8) converges fairly rapidly for all motions except for surge

(translation in the direction of the major axis). This numerical result is in

agreement with the theoretical result obtained in Noblesse and Triantafyllou
7

for translatory motions of ellipsoids. In particular, it is proved in this

study that the Neumann series (8) fails to converge for a needle-like spheroid

in longitudinal translation. Figure 1 shows that the sixth and fourth itera-

tions are essentially exact for sway and heave (translations in the directions

of the intermediate and minor axes), respectively. Convergence is even faster

for roll and pitch, for which three iterations are sufficient. Finally, five

iterations are necessary for yaw.

r.* The velocity potential *(F) associated with the modified integral equation

(4) and defined as

= f (;f)]

is proved in [7] to be exact for translatory motions of any ellipsoid. This

. theoretical result has been verified numerically for the ellipsoid considered

in Figure 1. The potential *(-) has also been verified numerically to be exact

for rotational motions (roll, pitch and yaw). The accuracy of the calculated

- added mass coefficients for all six fundamental motions is within 0.4% by using

approximately 400 panels. The above-defined potential *(F) corresponds to the

first approximation *('(T) in the sequence of iterative approximations *(n)( )

defined by the recurrence relation11

'*(n+1)(t") 
=  ()-f /¢n()L4 . T¢n)

with n?0 and *(0)(t) f(T), associated with the modified integral equation

(4). The practicality of using this recurrence relation for solving the

6



modified integral equations (6) and (7) is tested numerically in the following

section for a typical hull form.

FLOW ABOUT A SHIP FORM AT ZERO AND INFINITE FREQUENCY

The foregoing recurrence relation for potential flow in an unbounded fluid

takes the form

- *0(n+)t4 = o/[o(n) (9)

for flow in the zero-frequency limit, c,-"responding to the modified integral

equation (6). The corresponding recurrence relation associated with the

modified integral equation (7) for flow in the infinite-frequency limit is

= ())~)[l~1 ()-L) (;¢(n) )] (10)

The recurrence relations (9) and (10), with n > 0 and *0(0) = f0 , f(0) = f.,

have been used for calculating the six added-mass coefficients Aul for i = 1 to

6 in the zero- and infinite-frequency limits for the ship form depicted in Figure

2, with beam/length and draft/length ratios equal to 0.15 and 0.05, respec-

tively. The relative errors associated with the nth iterative approximations

Aii(n) to the added mass coefficients Aui for all six fundamental motions of the

ship (i = 1 to 6) are depicted in Figures 3 and 4 for flow in the zero- and

infinite-frequency limits, respectively. These figures show that six to eight

iterations are required.

CONCLUSION

The numerical results presented in this report indicate that the recur-

10
rence relations for free-surface flows corresponding to the recurrence

7
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relations (9) and (10) for flow in the zero- and infinite-frequency limits may

provide an efficient solution procedure compared to that associated with the

- classical integral equation as shown in Figure 1, especially for cases (hull

form equiped with a bulb or a sonar dome, low Froude number, high frequency) for

6
" which a large number of panels is required . Further numerical study of these

-" recurrence relations is required for ascertaining their practical usefulness.

8
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5 ELLIPSOID IN AN UNSOUNDED FLUID

SURGE

0 SWAY

0 HEAVE

0 ROLL

0 PITCH

0 YAW

13 5 7 0 11 13
ni NUMBER OF ITERATIONS

Figure 1 -Convergence of the Neumann Series (8) Associated with
the Integral Equation (1) f or Flow About An Ellipsoid
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Z Figure 2 -Hull Form Used in Calculations Presented in
Figures 3 and 4
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ZERO FREOUJENCY

0

100 

SURGE

0

0

HEAVE

a0

ROLL

-a 0

PITCH

0

YAW

-5 
_

0 1 2 3 4 5 6 7' 89 9 10
n *NUMBER OF ITERATIONS

Figure 3 -Convergence of the Recurrence Relation (9) Associated with
the integral Equation (6) for Zero-Frequency Flow About a

Typical Ship Form



INFINITE FREQUENCY

SURGE

0
- - SWAY

HEAVE". i, 0
S..

' ROLL
0

5.

5 "-PITCH

.5 0

YAW

::: -S - I I I I I I I I I I

0 1 2 3 4 5 6 7 a S 10
n a NUMBER OF ITERATIONS

.5 Figure 4 - Convergence of the Recurrence Relation (10) Associated with
the Integral Equation (7) for Infinite Frequency Flow About a

Typical Ship Form
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